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ABSTACT 
Safe cycling has become a priority in many New Zealand cities and a large investment in 
cycleways is underway. To maximize the benefit, it is important to have insight into cyclists’ 
preferences and factors influencing cyclist route choice. Previous, studies about preferences were 
typically done by asking respondents to rank/rate factors important to them, without linking those 
ranked/rated factors with respondents’ choices. Thus, such an approach cannot assess the 
changes in preferences and choices when there is interaction between factors. For example, 
cyclists’ route choices may change depending upon combinations of ‘levels/states’ of the ‘bicycle 
lane’ and ‘road hierarchy’ factors. Furthermore, when designing cycle networks/routes, it is not 
always possible to optimise them with respect to all factors. The stated preference method, used in 
this study, presented respondents with pairs of scenarios, involving different combinations of factor 
‘levels’, and asked which were preferred, highlighting ‘trade-off’ between factors. In this study, the 
factors of travel time, road hierarchy, on-street car parking and bicycle lanes were investigated. 
The responses were used to estimate choice models, indicating the relative importance of those 
factors. Ultimately, these results can be used to assist in the design of better cycle routes, hence, 
increasing cycle route use. 
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INTRODUCTION 
This study aimed to systematically investigate New Zealanders’ preferences over factors that 
influence their route choice when commuting by bicycle, using Christchurch as a case study. 
Christchurch was selected due to its unique situation caused by the rapidly evolving nature of the 
city after the earthquakes in 2010 and 2011 and the City Council’s ambitious plans to develop its 
cycle networks. These make the investigation of cyclists’ behaviour in Christchurch essential, as 
results of such a study can be used to assist better design to increase cycle route use. 
 
Given the research objective described above, several methods to elicit preferences were 
investigated. In the past years, ranking and rating methods were the two common methods used to 
reveal people’s preferences. In traditional surveys, respondents were often asked to rank or rate a 
number of preselected factors in their order of importance. By such a means, the relative 
importance of individual factors was captured. However, such methods do not link people’s 
preferences over factors with choices that they make. People tend to make different choices in 
different circumstances, which are created by different combinations of states/levels of considered 
factors. For instance, with regard to route choices, cyclists’ preferred/selected routes may depend 
upon the factors of ‘bicycle lane’ and ‘road hierarchy’. Road hierarchy categorizes roads according 
to their functions and capacities. Cyclists may choose a route that passes through major arterial 
roads if there are bike lanes on the roads, otherwise, in the absence of bicycle lanes, cyclists may 
only choose a route that passes through roads of a more minor nature, for example residential 
roads. 
 
Given the above descriptions and the research objective, choice modelling was considered the 
most appropriate method to be used in this study. Choice modelling is an analytical method which 
attempts to identify the sources of preferences or reasons behind individuals’ choice behaviour 
(Hensher et al., 2005). It involves specifying and estimating choice models, and thus deriving the 
relative weights (or importance) of factors in specified models. This will further be explained in the 
subsequent section. 
 
To obtain data needed to develop choice models and thus, to capture underlying preferences that 
trigger behavioural responses, two surveying techniques were considered: the revealed preference 
(RP) and stated preference (SP) methods. These methods, including their strengths and 
weaknesses, have been widely discussed in research literature (e.g. Hensher et al., 2005; 
Louviere et al., 2000). In brief, in an RP survey, respondents are asked to reveal their current or 
past behaviour or to indicate choices that they had made, leading to one observation per 
respondent. For instance, respondents are asked to draw, on a map, the route they took when 
commuting to work this morning. Because RP data represent real-life choices (also known as 
‘market’ data), they tend to have higher reliability and face validity. 
 
However, despite the strengths mentioned above, the RP method is constrained by the 
alternatives currently available. It cannot be used to assess people’s preferences when a new 
alternative is to be introduced. In addition, because researchers cannot control the relationships 
amongst factors, data related to non-chosen alternatives are often cannot be collected. 
 
The SP method involves presenting respondents with a number of hypothetical situations or 
scenarios and asking respondents to make a choice on each one of them, allowing the ‘trade-off’ 
between factors (Hensher, 1994). Factors represent the various characteristics of the alternatives 
(or choice options). A factor can then be subdivided into levels, defining its values. For example, 
when commuting to work, there are two routes that cyclists can take (and thus, two choice 
options/alternatives). These routes are different with regard to the following factors (and levels): 
commuting time (‘20 minutes’ and ‘30 minutes’); road hierarchy (‘arterial’ and ‘residential roads’); 
and bicycle lane (‘absence’ and ‘presence’). Hypothetical scenarios are created by varying the 
‘levels’ of preselected factors (or independent variables), leading to multiple observations of the 
response (or dependent variable) per respondent. For the example above, the numbers of factors 
and levels create eight possible hypothetical scenarios, leading to eight observations per 
respondent. Because researchers select factors and levels to be included in their study, they have 
more control over the research design and thus, they can minimise confounding effects of factors 
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not included in their study. Furthermore, as hypothetical scenarios are used to elicit people’s 
preferences, an SP study can include alternatives not currently available in the market. 
 
There are two main weaknesses of the SP method. As previously mentioned, in an SP study, more 
observations are required per respondent. This can mean that respondents may experience higher 
mental workload. Furthermore, respondents may not be able to understand hypothetical scenarios 
presented to them, possibly affecting the reliability of research outcomes. These weaknesses’ are 
addressed by carefully selecting factors and levels to be included in a study, examining the realism 
of combinations of levels in hypothetical scenarios and conducting pilot surveys. Thus, the clarity 
and readability of hypothetical scenarios can be improved and ambiguity can be minimized. 
 
Considering the strengths and weaknesses of both RP and SP methods, as summarized above, it 
was decided to use the SP method. Note that in an SP study, the number of hypothetical 
scenarios, which need to be assessed by respondents, increases with the increase in the number 
of factors and levels. Therefore, it may become unfeasible to ask respondents to assess all 
possible hypothetical scenarios. For instance, a study that investigates four factors, each having 
three levels, requires 81 possible hypothetical scenarios. To reduce the burden of respondents, it 
becomes necessary to limit the number of factors and levels to be investigated and to select, 
amongst all possible scenarios, the ones to be presented to respondents. 
 
In order to select hypothetical scenarios, two experimental design approaches were considered: 
orthogonal and efficient design. The orthogonal design approach is the most well-known and 
widely used approach. However, results of existing studies (e.g. Bliemer et al., 2009; Huber and 
Zwerina, 1996; Kessels et al., 2011; Sándor and Wedel, 2002) have highlighted the difficulty of 
maintaining orthogonality in a design generated by the orthogonal design approach, in particular, 
when such a design is used in a choice modelling study. Therefore, it was decided to apply the 
efficient design method. This method will be described in the Model Specification section. 
 
Any SP study requires a comprehensive process, involving multiple steps: 1) deciding upon the 
choice modelling type; 2) refining all stimuli, such as factors and levels; 3) specifying models to be 
estimated; 4) generating a design using the selected experimental design method (e.g. efficient 
design); and 5) creating a survey. These stages will in turn be described in the subsequent 
sections. The modelling outcomes and conclusion will be presented in the end of this paper. 
 

CHOICE MODELLING 
In choice modelling, each alternative (e.g. a route that cyclists can take) is considered to give a 
certain amount of utility (or net benefits) to people. Furthermore, the overall utility associated with 
alternative i (  ) has two components. The first one is referred to as the representative utility 

(denoted by   ), and it represents the utility that can be observed by researchers based on the 
selected factors and levels of the alternative. The second component, often referred to as the 

random error component (denoted by   ), represents the utility associated with factors unobserved 
by researchers, such as variations in taste amongst individuals and other factors excluded from a 
study. Accordingly, the overall utility associated with alternative i (Eq. 1) and the representative 
utility (Eq. 2) can be written as: 

         Eq. 1 

                              Eq. 2 

where     is an alternative-specific constant (ASC), representing the average role of all 

unobserved components of utility, and     is the estimated parameter (or the weight) associated 
with factor    of alternative i. 
 
Eq. 2 shows that choice modelling provides an estimate of the weight for each factor, indicating the 
relative importance of the factor affecting the representative utility. The statistical significance of 
each weight is also identified. Furthermore, assuming that an individual makes a rational decision, 
an alternative with the highest utility is chosen. 
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In this study, the multinomial logit (MNL) modelling technique, a particular type of choice modelling, 
was used. The MNL model makes rigorous assumptions about the unobserved components of 
utility: they are independent and identically distributed (IID) across alternatives and observations, 
and they are distributed according to the extreme value type-1 (EV1) distribution. Note that there 
are other choice modelling types which relax these assumptions, such as the mixed logit model, 
the scale heterogeneity model and the generalized mixed logit model (see Ben-Akiva and Lerman, 
1985; Fiebig et al., 2010; Hensher et al., 2005; Louviere et al., 2000; Train, 2009). However, they 
are not discussed here. The MNL model was selected because it is simpler and it can be used to 

calculate analytically the values of probability of choosing alternative i (     ) using the following 
equation (Eq. 3). 

      
     

       
 
   

 Eq.  3 

 
STIMULI REFINEMENT 
To select factors to be included in the study (or    in Eq. 2), a literature study was conducted. This 
study predominately focused on international papers due to the limited number of New Zealand 
publications researching cyclists’ route choice. During the literature study, many factors were 
identified to influence route choices, as summarized below. 

- Topography 
Topography, especially the hilliness of an area, has previously been identified as a 
substantial influencing factor in cycling. This empirical basis was investigated, in an attempt 
to quantify it. It was suggested that 1 meter vertical travel on a bicycle could be considered 
to be equivalent to approximately 8 meters horizontal travel (Scarf and Grehan, 2005). The 
results of a study of cycling in Zurich (Switzerland) (Menghini et al., 2010) also found that 
road gradient is an influential factor. 

- Bicycle infrastructure 
Bicycle infrastructure is a powerful factor that affects cyclists' route preference, with the 
presence of bicycle lanes, trails and paths influencing individuals’ decisions (Akar and 
Clifton, 2009). This sentiment appears particularly true for the older generation, who 
appreciate cycle paths more than the youth (Bernhoft and Carstensen, 2008). However, the 
results of another study (Broach et al., 2012) show that bike lanes have been found to be 
no more or less attractive than a basic low traffic volume street. While in certain situations, 
the construction of a bike lane is unwarranted, in other situations, such construction is 
essential. 

- Cyclists’ experience 
As a level of cyclists’ experience increases with cycling times on roadways, cycling tends to 
gradually become less onerous (Hunt and Abraham, 2006). Thus, cyclists may modify 
routes as their skill level and confidence increases.  

- Road hierarchy/traffic volume and the number of intersections 
These are important factors. Cyclists commonly use routes significantly longer than the 
most direct ones, actively diverting to avoid main roads and crossings (Krenn et al., 2014). 
If the infrastructure was designed in such a way that it took into account route directness for 
cyclists, travel distances could be notably reduced. Distance is a crucial factor as 
demonstrated in a study of cycling in Zurich (Switzerland) (Menghini et al., 2010). 

- On-street car parking 
The results of a study conducted in Texas (the USA) indicate that on-street car parking is 
another important factor (Sener et al., 2009). All cyclists participated in their study preferred 
a route without any on-street parking as parking may hinder bicycle movement and it 
causes a safety threat. 

- Other factors 
Besides the factors listed above (i.e. topography/gradient, bicycle lane/path, cyclist’s 
experience, road hierarchy/traffic volume, the number of intersections, travel distance/time 
and on-street car parking), other factors were also found to affect route choices, such as 
pavement-surface condition (Landis et al., 1997), traffic speed, street width, the number of 
roundabouts, the number of stop signs, street lightning (Segadilha and Sanches, 2014), 
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traffic calming (Winters et al., 2010), the number of traffic lights (Krenn et al., 2014) and 
speed limit (Sener et al., 2009). 

 
In order to limit the number of hypothetical scenarios, the number of factors to be included in this 
SP study must be limited. The research objective, the findings from the literature review and the 
specific conditions of Christchurch were considered when selecting the most relevant factors. 
Furthermore, the selected factors should also be relevant to the policy development in 
Christchurch. Accordingly, the following four factors were chosen: 1) on-street parking, 2) bicycle 
lanes, 3) road hierarchy and 4) travel time. These factors were also considered to be easily 
defined, meaning less attribute ambiguity. This aided in the clarity of the hypothetical scenarios. 
 
Once the factors were determined, it was necessary to set the levels for each of them. The levels 
of the bicycle lanes and on-street parking factors were either present or absent, implying that two 
levels were assigned to each of these factors. The road hierarchy were determined by the road 
types around Christchurch and roads that cyclists are allowed to travel on (hence no motorways or 
sidewalks). Initially, two levels were assigned to this factor: minor and major arterial roads. 
Furthermore, the following three levels were initially assigned to the travel time factor: 20, 25 and 
30 minutes. 
 
A pilot SP survey was generated using the above factors and levels. The aim of this pilot survey 
was to check the clarity and readability of the survey and to conduct a primary analysis to check 
whether or not the selected factors and levels would yield statistically significant parameter 
coefficients. The NGENE software, specialized in the experimental design generation, was used to 
generate the design. The resulted design was converted into a pilot survey and was distributed to 
seven respondents. The data were analysed using the NLOGIT software, specialized in the choice 
modelling analysis. 
 
The results of the preliminary analysis show that the coefficient of the travel time factor was not 
statistically significant. This had not been expected, as the results of existing studies (mentioned 
above) show a strong influence of this factor in the route choice decision. It was suspected that this 
result was caused by the relative closeness of the selected levels, making the respondents 
underestimate the factor. Therefore, it was decided to change the levels to 20, 30 and 40 minutes. 
Furthermore, after contemplating on the preliminary design, an extra level was added to the road 
hierarchy factor and thus, the levels of this factor became: residential, minor arterial and major 
arterial roads. Feedback from the respondents also highlighted concerns over the interpretation of 
the road hierarchy. The solution for this was to provide visual aids in the form of photographs for 
the final survey. This will further be explained in the Survey Generation section. 
 

MODEL SPECIFICATION 
Before listing the utility functions to be estimated, it should be noted at this point that in general, 
two types of effects can be estimated: main and interaction effects. However, in this study, only the 
main effects were to be estimated. 
 
The main effect can take two forms: linear and non-linear. In a model that estimates linear main 
effects, a unit increase in a level of a factor is assumed to influence the utility (or dependent 
variable) in a linear way. Two types of coding can be used for this purpose: the design coding (e.g. 
three levels of a factor are coded as 0, 1, 2) and the orthogonal coding (e.g. three levels of a factor 
are coded as -1, 0, 1). In a model that estimates non-linear main effects of factors, either dummy 
or effects coding can be used to code the levels of factors. Both coding methods work by creating 
‘new variables’ for each factor. The number of those new variables is equivalent to the number of 
levels minus one. For example, the factor of ‘road hierarchy’ had three levels (i.e. residential, minor 
arterial and major arterial roads). If non-linear effects were to be estimated for this factor, two 
variables must be created (3 levels-1), e.g. RH1 and RH2. If a route passes residential roads, 
RH1=1 and RH2=0. If a route passes minor arterial roads, RH1=0 and RH2=1. If a route passes 
major arterial roads, RH1=0 (dummy coding) or -1 (effects coding) and RH2=0 (dummy coding) or 
-1 (effects coding). Further descriptions of the above coding methods can be seen in Hensher et 
al. (2005). 
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Given the final selection of factors and levels, the following four models were specified. The 
parameters (  ) of each model were to be estimated using the data obtained from the final SP 
survey (to be discussed in the Survey Generation section). Note that models with non-linear effects 
were also specified (i.e. Models 2 to 4). However, a model with non-linear effects could be 
estimated only when a factor has at least three levels. Thus, in this study, the non-linear effects 
were estimated only for the road hierarchy and travel time factors. 
 
Model 1 (the model with linear main effects only): 

                                                  

                                          
Eq.  4 

 
Model 2 (the model with non-linear main effects on the road hierarchy factor): 
                                                            

                                                    
Eq.  5 

 
Model 3 (the model with non-linear main effects on the travel time factor): 

                                                            
                                                    

Eq.  6 

 
Model 4 (the model with non-linear main effects on the road hierarchy and travel time factors): 

                                                       

                
                                               

                

Eq.  7 

 
where PARK = on-street parking; BLANE = bicycle lanes; RH = road hierarchy; RH1 and RH2 = 
new variables to estimate non-linear effects of residential road; TT = travel time; TT1 and TT2 = 

new variables to estimate non-linear effects of travel time;    = parameters to be estimated using 
data from the final survey and         = 0 (i.e. the reference alternative). Note that the design 
coding (e.g. 0,1,2) was used in the analysis to code the two-level factors while the effects coding 
was used to code the three-level factors. 
 

EXPERIMENTAL DESIGN GENERATION 
It has been previously mentioned that the efficient design was used to generate the experimental 
design for the survey. The efficient design method seeks to obtain more reliable estimates (i.e. 
parameters with small standard errors). To do this, the efficient design requires some prior 
information about estimates of factors, which can be obtained, for instance, using results from a 
pilot study. These prior estimates are used to determine an asymptotic variance-covariance (AVC) 
matrix, through which the asymptotic standard errors are obtained (Bliemer and Rose, 2009a). 
Huber and Zwerina (1996) found that designs that minimize asymptotic standard errors of 
parameter estimates are able to produce more reliable estimates with smaller sample sizes. 
Furthermore, the results of a study done by Bliemer and Rose (2009a) suggest that the standard 
error of an estimate improves as the sample size gets larger. However, the reduction of the 
standard error caused by the increase in sample size is still much smaller than the reduction 
caused by using a more efficient design. 
 
Two types of ‘error’ indices, called D-error and A-error, are commonly used to measure efficiency, 
or precisely inefficiency, and they are derived from an AVC matrix. Without going into technical 
detail, D-error is calculated using the determinant of an AVC matrix while A-error is calculated 
using the trace of an AVC matrix. A design with low D-error and A-error values is considered to be 
more efficient (and thus, it is more likely to produce statistically significant parameter estimates) 
than a design with high D-error and A-error values. Accordingly, the goal of researchers is to 
obtain a design that can minimize these error indices. Furthermore, D-error is often preferred over 
A-error because the latter often gives some scaling problems (Bliemer and Rose, 2009a). In 
addition to the above indices, S-estimate, calculated using the information obtained through prior 
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estimates, is used to give an indication of the minimum sample size required to obtain significant 
parameter estimates (Bliemer and Rose, 2009b). 
 
Thus, considering the above, a second pilot survey was conducted. The main purpose was to 
obtain the prior estimates used to generate the final survey design. The NGENE software was 
used to generate a starting up design that consisted of 36 hypothetical choice scenarios. This 
rather large number of hypothetical scenarios was used to compensate for a small number of 
respondents targeted in the second pilot survey. The resulted design was distributed to 14 
respondents who all completed the survey. Similar to the first pilot survey, the data were again 
analysed using the NLOGIT software and the resulted estimates were used as the prior estimates 
to generate the efficient design for the final survey. 
 

SURVEY GENERATION 
The final SP design was generated using the NGENE software. NGENE is software specialized in 
generating an experimental design. The advantage of using such software is its ability to assess a 
large number of designs in a shorter period of time. The final design was obtained after evaluating 
over one million designs. It took around 24 hours to assess that large number of designs. For each 
design, D-error, A-error and S-estimate values were computed. The final design was selected 
because, compared to other designs, it had the lowest D-error value (i.e. 0.319491) and a 
sufficiently low A-error value (i.e. 0.497597). Furthermore, it has a manageable sample size 
indicated by the S-estimate value (i.e. 16.150781). Note that in practice, a design with the lowest 
possible D-error value (or global optimum) is hard to find and thus, a design with a considerably 
low D-error value (or local optimum) is considered sufficient. Moreover, there is no exact indication 
of acceptable D-error values. For some studies, the D-error of 0.32 may be considered as 
acceptable while for others, it is not. 
 

Choice 
scenario 

Route A Route B 

Travel 
time 

Road 
hierarchy 

Bike 
lane 

On-
street 

parking 

Travel 
time 

Road 
hierarchy 

Bike 
lane 

On-
street 

parking 

1 40 mins residential yes yes 20 mins minor no no 

2 40 mins major yes no 20 mins residential no yes 

3 20 mins residential no no 40 mins minor yes yes 

4 20 mins minor no yes 40 mins residential yes no 

5 30 mins residential no yes 30 mins major yes no 

6 40 mins minor yes no 20 mins major no yes 

7 30 mins residential no no 30 mins major yes yes 

8 20 mins major yes yes 40 mins minor no no 

9 30 mins major no no 30 mins minor yes yes 

10 30 mins minor no no 30 mins residential yes yes 

11 40 mins minor yes yes 20 mins major no no 

12 20 mins major yes yes 40 mins residential no no 

Table 1 The efficient design used in the final SP survey 
 
The final survey was administered online using Qualtrics, an online survey development and 
management tool. Thus, the final SP design (Table 1) was converted into an online survey and 
each hypothetical scenario was visualized using photographs, taken from the Google Street View, 
as shown in Figure 1. Several other questions, inquiring about the respondents’ socio-
demographic characteristics and cycling behaviour, were added into the survey (see Table 2). 
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Figure 1 An example of a hypothetical scenario presented to the respondents in the survey 
 

SAMPLE 
A link to the survey was published on various Facebook pages and was shared amongst 
colleagues in the University of Canterbury in the middle of 2015. Once launched, the survey 
remained active for approximately 2 weeks. Within this time period a total of 53 respondents 
started the survey. However, only 42 completed the survey in its entirety and hence, only their data 
were used in the analysis. This sample size surpassed the minimum required sample of 17 
respondents suggested by the S-estimate (see the Survey Generation section). The socio-
demographic characterises of the respondents along with their travel/cycling behaviour are 
presented in Table 2. 
 

Socio-demographic 
characteristics & mode 

choice/cycling behaviour 
Sample (N=42) 

Gender female: 38%; male: 52% 

Age 18-20 years old: 22%; 21-25 years old: 37%; 26-30 years old: 19%; 
31-40 years old: 15%; 41-67 years old: 7% 

Usual modes for commuting car: 22%; motorbike: 1%; bike: 46%; bus: 7%; walk: 22%; 
skateboard: 2% 

Accessibility to bicycle never: 9%; rarely: 10%; sometimes: 5%; always: 76% 

Commuting distance 1km: 21%; 2km: 14%; 3km: 14%; 4km: 5%; 5km: 3%; 6km: 7%; 7km: 
7%; 8km: 5%; 9km: 7%; 10+km: 17% 

Annual cycling habit never: 12%; rarely: 9%; sometimes: 17%; often: 14%; daily: 48% 

Relations with the University of 
Canterbury 

full-time student: 67%; full-time staff: 14%; part-time student: 12%; 
visitor: 5%; other: 2% 

Table 2 The respondents’ socio-demographic characteristics and mode choice/cycling behaviour 
 

RESULTS AND DISCUSSION 
The MNL models, i.e. Models 1 (Eq. 4) to 4 (Eq. 7), were estimated using the NLOGIT software. 
However, because Models 3 and 4 produced fewer statistically significant parameter estimates, it 
was decided to proceed with Models 1 and 2 (see Table 3). 
 
The modelling results show that all parameter coefficients were statistically significant at 1%, 
except for         which is the alternative specific constant of Route A. This is a good result as this 
means that the average influence of all factors excluded in the models was not significantly 
different than zero. Furthermore, the results of the other estimates of both models were intuitive: 1) 
the presence of on-street car parking negatively affects (or reduces) the utility of taking a certain 
route, i.e. -0.89264 in Model 1 and -0.96500 in Model 2; 2) the presence of bicycle lane positively 
affects (or increases) the utility of taking a certain route, i.e. 1.04740 in Model 1 and 1.16289 in 
Model 2; 3) the increase in travel time negatively affects the utility, i.e. -0.92176 in Model 1 and -
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1.01759 in Model 2; and 4) the increase in road hierarchy negatively affects the utility. In the linear 
model (Model 1), its coefficient was -0.58669. In the non-linear model (Model 2), the RH1 and RH2 
variables positively affect the utility. This means, the presence of residential roads positively affects 
the utility (i.e. 0.47966×1+0.31306×0=0.47966) and the presence of minor arterial roads positively 
affects the utility as well (i.e. 0.47966×0+0.31306×1=0.31306). However, the magnitude of 
influence of minor arterial roads on the utility was found to be smaller than residential roads. 
Furthermore, as the effects coding was used (see the Model Specification section for further 
explanation), the presence of major arterial roads negatively affects the utility (i.e. 0.47966×-
1+0.31306×-1=-0.79272). These imply that the respondents much preferred to cycle either on 
residential roads or minor arterial roads than on major arterial roads, with residential roads being 
slightly preferred over minor arterial roads. These results were in line with the results of Model 1 
(i.e. showing the negative influence of the increase of road hierarchy on the utility). 
 

Parameter
1
 Model 1

1
 Model 2

1
 

 Coefficient
2
 Standard Error Coefficient

2
 Standard Error 

        0.11323 0.10294 0.07532 0.10478 

      -0.89264*** 0.12897 -0.96500*** 0.13287 

       1.04740*** 0.14326 1.16289*** 0.14999 

    -0.58669*** 0.08971 NA NA 

     NA NA 0.47966*** 0.09409 

     NA NA 0.31306*** 0.09151 

    -0.92176*** 0.09748 -1.01759*** 0.10093 
1
 See the Model Specification section for the definitions of the parameters 

2 ***, **, * in turn mean significance at 1%, 5%, 10% 

Table 3 MNL results of Models 1 and 2 
 
The results of both models show the order of relative importance of factors: bicycle lane appeared 
to be the most influential factor, followed by travel time, on-street parking, and road hierarchy. The 
results also imply that people preferred to select the shortest route with bicycle lanes, preferably 
going through residential roads or at least minor arterial roads, and without cars being allowed to 
park on-street. 
 
The findings from this research support the expansion of the cycle lane network within the city of 
Christchurch. However, certain warnings should also be heeded. Although cycle lanes were found 
to be regarded as a positive factor by cyclists, they are not the only important factor that affects the 
cyclists’ route choice. Travel time is also important. It is something the City Council may have a 
limited control over, as the Council cannot dictate where individuals live/work. However, the council 
can design bicycle lanes in such a way that can help minimize travel time, such as by avoiding 
major intersections. However, the exact actions or measures that can be implemented to reduce 
travel time for cyclists must be studied carefully and they are not a part of this research project. 
Also, when new bike lanes are to be constructed, their placement, in relation to car parking, needs 
to be carefully considered, as it evidently has an impact on the cyclists’ route choice. Furthermore, 
as road hierarchy seems to also influence the route choice, the placement of bicycle lanes should 
be carefully planned. Ultimately, it is not enough to simply construct bicycle lanes and thereby think 
the cyclists’ needs have been satisfied. 
 

CONCLUSION 
This study had addressed the research objective: to systematically investigate commuting cyclists’ 
preferences over factors considered important in their route choice decision. This study, focused 
on the factors of travel time, road hierarchy, on-street car parking and bicycle lanes, using 
Christchurch as the case study. It also explored the use of the stated preference (SP) method to 
collect information about choices that people make in various situations, created from various 
combinations of levels of factors. This method, despite its increasing popularity overseas, has not 
been used often in New Zealand. 
 
The results of this study revealed not only the relative importance of the selected factors, but also 
the mechanism in which these factors influenced the cyclists’ route choice (through the utility 
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associated with using a particular route). In this study, four multinomial logit (MNL) models were 
specified and estimated. Two models (i.e. the model with linear effects only and the model with 
non-linear effects on the road hierarchy factor) appeared to be superior. Estimates of both models 
convey a similar message: bicycle lanes appeared to be the most influential factor, followed by 
travel time, on-street parking, and road hierarchy. Furthermore, their statistical significance levels 
were also estimated. 
 
The results can be used to predict cyclists’ route choice in various situations and to assist with 
better design of cycling lanes to increase cycle route use. Regarding the latter, the placement of 
bicycle lanes must carefully be considered. Bicycle lanes should be placed in such a way to avoid 
major arterial roads and roads with on-street car parking. Furthermore, they should be designed to 
help reduce cyclists’ commuting time, for instance, by avoiding major intersections. These aims 
may prove challenging to achieve in Christchurch due to the current volume of on-street parking 
and the nature of inner city roads. However, if cycling promotion is to be a high priority, these 
issues need to be recognised and addressed. 
 
To maximize the benefit from a large investment in bicycle lanes in New Zealand, further 
investigation should be done in this field. The Christchurch study should be repeated on a larger 
scale, including a wider cross-section of participants, and a similar study should be conducted in 
other NZ cities. Additionally, studies that investigate different designs (and widths) of bicycle lanes 
or other factors that may influence cyclists’ route choice should be supported and encouraged. 
Results of such studies will deepen our understanding regarding New Zealand cyclists’ behaviour 
and preferences. Accordingly, high impact actions can be formulated to further increase cycle 
route use. 
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