Business Case for Walking

Counting Walking to Make Walking Count in Auckland

Kent Lundberg, Principal Urban Designer

Measuring Pedestrian Delay

Final Report

Prepared for: Auckland Design Office, Auckland Council

Date: 22 March 2017 Version: Draft

Available at KNOWLEDGEAUCKLAND.ORG.NZ

Transport Economics

Pedestrian Connectivity and Urban Productivity Valuing the Urban Realm (VURT)— Measuring Pedestrian Congestion -----> Typical profile of benefits from a transport project **OTHER SAFETY HEALTH BENEFITS ENVIRONMENTAL BENEFITS** TRANSPORT RELIABILITY BENEFITS

HEALTH BENEFITS (WALKING)

WIDER ECONOMIC BENEFITS

-Productivity

TRANSPORT USER BENEFITS

- -Travel Time Benefits
- -Quality Improvements

Counting pedestrians in travel time assessment

Auckland traffic congestion costs city almost \$2b a year

4:02 pm on 2 August 2017

Todd Niall, Auckland Correspondent

Traffic congestion in Auckland could be costing nearly \$2 billion a year and is having a big impact on the city's productivity, according to a new report.

13x

pedestrians as vehicles on High Street all day

pedestrians as vehicles on Queen Street all day

Victoria St / Queen St

CROSS STREET	INTERSECTION TYPE	COST OF DELAY/YEAR
Quay Street	Barnes Dance, Midblock Crossing, Very High Ped Volumes	\$2m
Customs Street	Barnes Dance, T-Intersection, Very High Ped Volumes	\$2m
Fort Street	Barnes Dance, Midblock Crossing, High Ped Volumes	\$.5m
Shortland Street	Barnes Dance, T-Intersection Crossing, High Ped Volumes	\$.9m
Wyndham Street	Barnes Dance, T-Intersection Crossing, High Ped Volumes	\$.9m
Victoria Street	Barnes Dance, X-Intersection, High Ped Volumes	\$2.2m
Wellesley Street	Barnes Dance, X-Intersection, High Ped Volumes	\$2.2m
Wakefield Street	Barnes Dance, T-Intersection, Med Ped Volumes	\$.5m
Mayoral Drive	Phased, X-Intersection, Med Ped Volumes	\$.7m
Karangahape Road	Phased, X-Intersection, Med Ped Volumes	\$.7m

Annual ~\$13.0m

NPV = ~\$186m

^{*}based on a 40 year period with 6% discount rate

Estimating the user benefits from public realm investment

- Boffa Miskell (2017) applied Transport for London's Valuing the Urban Realm Toolkit to Auckland
- VURT scores places on ease of pedestrian movement and quality of public spaces
- Benefits are converted to monetary equivalents using willingness to pay survey
- Quantifies user benefits

- Uses Pedestrian Environment Review System (PERS)
 - » Future user numbers
 - » Effective footpath width
 - » Personal security
 - » Sense of place
 - » Feeling comfortable
- Link and space values: moving through, lingering, and sitting

Valuing Urban Realm Toolkit

User Benefits - Step One

Scheme Name	
Section Number	

Base Input Data

Pedestrians Moving	Baseline	Scenario	Change (S-B)
Number (per hour)			0
Average Walk Distance (m)			
Average Walk Speed (m/s)	1.33	1.33	

Static Users	Baseline	Scenario	Change (S-B)
Number			0
Average Dwell Time (mins)			

Time Period of Analysis	
Weekday Scaling Factor	
Annualisation Scaling Factor	0

PERS Changes

PERS Link Attributes	Baseline	Scenario	Change (S-B)	Baseline Value	Scenario Value	Change (ppm)
Effective width			0			0.000
Dropped kerbs			0			0.000
Obstructions			0			0.000
Permeability			0			0.000

SEGMENT ATTRIBUTES:

Block: Wyndham - Victoria Streets

Length: 210 metres

Width: 29 metres

Queen Street Future Transit Mall

- Future Light Rail Transit / Pedestrian Mall
- 200% growth footfall
- NZ\$702,000 annual benefits (one block)
- NZ\$15,150,000 lifetime benefits*(one block)

- NZTA's procedures consider quality benefits, eg parameters for valuing improved PT stops, stations, vehicles
- But once people get off the bus, quality no longer matters!
- If this methodology was extrapolated along Queen Street the annual benefits would be \$3.0 million (or \$65 million lifetime benfits)

Study Area

- We have good evidence on agglomeration economies at the 'city-wide' scale
- Doubling city size / density leads to a 3-10% increase in economic productivity
- There is less evidence on agglomeration economies at the 'micro' scale Effective Job Density (EJD)

Rohani and Lawrence (2017a) measured

walkability in the Auckland city centre

 A pedestrian network was developed based on the existing road network in the study area

- Pedestrian links were assigned values based on their speed
- 'Network analyst software' was run to estimate the travel time between each origin and destination point
- Pedestrian travel time matrices were combined with detailed estimates of employment to create a measure of the Effective Job Density (EJD)

Walking network within the study area

- Agglomeration economics literature suggests that there is a positive and causal relationship between EJD and productivity.
- They examined how variations in walkability related to variations in productivity
- Productivity was estimated using a proxy of wage levels by industry type
- Key result: Positive correlation between walkability and productivity

"There is a positive relationship between connectivity and economic productivity"

- The point estimate suggests that a 10% increase in walking EJD is associated with a 5.3% increase in productivity.
- This means that a 1% increase in walking EJD will increase the value of economy of the study area by 0.53% or approximately \$42 million based on the authors' estimate of \$8.01 billion GDP for the study area.

Figure 19: The association between walking EJD and labour productivity

How can producivity be improved by increasing EJD?

Scenario Testing

1.1 Additional through-block links

Change in EJD 0.27%

Impact on economy \$11.13 million

1.2 Shared streets, laneway network

Change in EJD 1.21%
Impact on economy \$50.04 million

1.3 Shortland Street connections

Change in EJD .029%
Impact on economy \$1.2 million

Scenario Testing

Figure 22 New EJD index scenario 2 compared to updated base EJD index

2. Pedestriansed Queen Street

Change in EJD 5.90%
Impact on economy \$244 million

Business Case for Walking

Counting Walking to Make Walking Count in Auckland

Contact:

Kent Lundberg, Principal Urban Designer, MRCagney, klundberg@mrcagney.com

Peter Nunns, Principal Economist, MRCagney, pnunns@mrcagney.com

Stuart Houghton, Urban Designer, Boffa Miskell, Stuart.Houghton@boffamiskell.co.nz

Mehrnaz Rohani, Research Economist, Auckland Council RIMU, Mehrnaz.Rohani@aucklandcouncil.govt.nz

Karangahape Road Scenario 1A

- · Retain existing footpath width
- 320% growth footfall
- NZ\$73,000 annual benefits
- NZ\$1,600,000 lifetime benefits

A Valuing of the Urban Realm Toolkit for Auckland

Case Study Research 2017

Karangahape Road Scenario 2A

- · Widened footpaths
- 320% growth footfall
- NZ\$261,000 annual benefits (
- NZ\$5,600,000 lifetime benefits

A Valuing of the Urban Realm Toolkit for Auckland

Case Study Research 2017

Pedestrian Movement Count

- Videotape the two intersections for an hour during mid day
- Review footage and document every pedestrian movement in every direction

Average Delay per Pedestrian

- Signal timing data from each intersection
- Crossing distance for each leg of each intersection
- Average walking speeds

Value of Travel Time

- NZTA Economic Evalutation Manual
 - -Estimation
 Purpose of Trip
 (different purposes
 have varying
 values)
 - -Average value of Time for Pedestrians

Annualisation Factor

 Based on the Heart of the City pedestrian counts for 2016. Calculated the ratio of a compable day to the annual pedestrian count.

Random arrivals at the intersection

- Over 7,700 pedestrians moved through the intersection in 1 hour
- 1,200 cars passed through the intersection in same hour
- Average delay per pedestrian 27 seconds
- 161,115 hours of annual delay to pedestrians
- Annual wasted time due to delay "costs"
 \$2.2m
- NPV is \$36m for free flow conditions

Victoria St / Queen St

